
Kitsune: Efficient, General-purpose Dynamic Software Updating for C∗

Christopher M. Hayden Edward K. Smith Michail Denchev Michael Hicks
Jeffrey S. Foster

Department of Computer Science, University of Maryland, College Park, USA

Abstract
Dynamic software updating (DSU) systems allow pro-
grams to be updated while running, thereby allowing de-
velopers to add features and fix bugs without downtime.
This paper introduces Kitsune, a new DSU system for C
whose design has three notable features. First, Kitsune’s
updating mechanism updates the whole program, not in-
dividual functions. This mechanism is more flexible than
most prior approaches and places no restrictions on data
representations or allowed compiler optimizations. Sec-
ond, Kitsune makes the important aspects of updating
explicit in the program text, making its semantics easy
to understand while keeping programmer work to a min-
imum. Finally, the programmer can write simple speci-
fications to direct Kitsune to generate code that traverses
and transforms old-version state for use by the new code;
such state transformation is often necessary, and is sig-
nificantly more difficult in prior DSU systems. We have
used Kitsune to update five popular, open-source, single-
and multi-threaded programs, and find that few program
changes are required to use Kitsune, and that it incurs
essentially no performance overhead.

1 Introduction

Running software systems without incurring downtime is
very important in today’s 24/7 world. Dynamic software
updating (DSU) services can update programs with new
code (to fix bugs or add features) without shutting them
down. The research community has shown that general-
purpose DSU is feasible: systems that support dynamic
upgrades to running C, C++, and Java programs have
been applied to dozens of realistic applications, tracking
changes according to those applications’ release histo-
ries [1, 3, 7, 8, 9, 10, 12, 13, 14]. Concurrently, indus-
try has begun to package DSU support into commercial
products [2].

∗Draft as of January 18, 2012.

We are interested in supporting general-purpose DSU
for single- and multi-threaded C applications. While
progress made by existing DSU systems is promising, a
truly practical system must be in harmony with the main
reasons developers use C: control over low-level data
representations; explicit resource management; legacy
code; and, perhaps above all, performance. In this paper
we present Kitsune, a new DSU system for C that, as we
discuss in detail in Section 5, is the first system that satis-
fies these motivations while supporting general-purpose
dynamic updates in a programmer-friendly manner.

Kitsune operates in harmony with C thanks to three
key design and implementation choices. First, Kitsune
uses entirely standard compilation. After a translation
pass to add some boilerplate calls to the Kitsune run-
time, a Kitsune program is compiled and linked to form a
shared object file (via a simple Makefile change). When
a Kitsune program is launched, the runtime starts a driver
routine that loads the first version’s shared object file and
transfers control to it. When a dynamic update becomes
available (only at specific program points, as discussed
shortly), the program longjmps back to the driver rou-
tine, which loads the new application version and calls
the new version’s main function. Thus, application code
is updated all at once, and as a consequence, Kitsune
places no restrictions on coding idioms or data represen-
tations; it allows the application’s internal structure to be
changed arbitrarily from one version to another; and it
does not inhibit any optimizations.

Second, Kitsune gives the programmer explicit con-
trol over the updating process, which is reflected as three
kinds of additions to the original program: (1) a handful
of calls to kitsune update(...), placed at the start of one
or more of the program’s long-running loops, to specify
update points at which dynamic updates may take effect;
(2) code to initiate data migration, which is the transfor-
mation of old global state to be compatible with the new
program version; and (3) code to perform control migra-
tion, which redirects execution to the corresponding up-

date point in the new version. In our experience, these
code additions are small (see below) and fairly easy to
write because of Kitsune’s simple semantics. (Section 2
explains Kitsune’s use in detail.)

Finally, Kitsune includes a novel tool called xfgen that
makes it easy to write code to migrate and transform old
program state to be compatible with a new program ver-
sion. The input to xfgen is a series of type and variable
transformation specifications, one per changed type or
variable, that describe in intuitive notation how to trans-
late data from the old to new format. The output of xf-
gen is C code that performs the transformations wherever
they are needed: at a high level, the generated transform-
ers operate analogously to a tracing garbage collector,
traversing the heap starting at global variables and locals
marked by the programmer. When the traversal reaches
data requiring transformation, it allocates new memory
cells and initializes them according to the actions in the
transformers, taking care to maintain the shape of the
data structures. The old version’s copies of any migrated
data structures are freed once the update is complete.
Kitsune’s approach is easy to use, relative to other DSU
systems; it adds no overhead during the non-updating
portion of execution, and it does not change data layout.
(Section 3 describes xfgen.)

We have implemented Kitsune and used it to up-
date three single-threaded programs—vsftpd, redis, and
Tor—and two multi-threaded programs—memcached
and icecast. For each application, we considered from
three months’ to three years’ worth of updates. We found
that the number of code changes we needed to make for
Kitsune was generally small, between 87 and 276 LoC
total, across all versions of a program. The change count
is basically stable, and not generally related to the ap-
plication size, e.g., 157 LoC for 16 KLoC icecast vs.
276 LoC for 76 KLoC Tor. xfgen was also very effec-
tive, allowing us to write state transformers with simi-
larly small specifications consisting of between 27 and
200 lines in total; the size here depends on the number
of data structure changes across an application’s streak.
We tested that all programs behaved correctly under our
updates. We measured Kitsune’s performance overhead,
and found it ranged from -2.2% to +1.8%, which is in the
noise on modern environments [11]. We also found that
the time required to perform an update was typically less
than 40ms; icecast’s longer, ∼1s update time is due to
internal timing constraints and does not adversely affect
the application. (See Section 4 for full details.)

Considered as a whole, we think that Kitsune’s design
meshes well with C without limiting the form of dynamic
updates, and without imposing an undue burden on DSU
programmers. In short, we find Kitsune to be the most
flexible, efficient, and easy to use (and deploy) DSU sys-
tem for C developed to date.

.c
.c

.c
kitc gcc -c

-fPIC
-fvis...=

gcc
-sharedxfgen

.c
.c

.ts

.xf

.c
.c

.c

.c
.c

.o

.so

st.c rt.a

.c
.c

.ts

(old)

Figure 1: Kitsune build chain

2 Kitsune

The process of building a Kitsune application is illus-
trated in Figure 1. There are two inputs provided by
the programmer: the main application’s .c source files
(upper left) and an xfgen . xf specification file for trans-
forming the running state during an update (not needed
for the initial version). The source files are processed by
the Kitsune compiler kitc to add some boilerplate calls
derived from programmer annotations. Rather than com-
pile and link the resulting .c files to a standalone exe-
cutable, these files are compiled to be position indepen-
dent (using gcc’s -fPIC flag) and linked, along with the
Kitsune runtime system rt .a, into a shared object library
app.so. (For the best performance we also use gcc’s -
fvisibility=hidden option to prevent application symbols
from being exported, since exported symbols incur heavy
overhead when called.) When building an updating ver-
sion of the program, the . xf file is compiled by xfgen to
C code and linked in as well. Processing the . xf requires
. ts type summary files produced by kitc for the old and
current versions (described in detail in Section 3.2).

The first version of a program is started by execut-
ing kitsune app.so args..., where args... are the pro-
gram’s usual command-line arguments. The kitsune ex-
ecutable is Kitsune’s application-independent driver rou-
tine, which dynamically loads the shared library and then
performs some initialization. Among other things, the
driver installs a signal handler for SIGUSR2, which is
later used to signal that an update is available. (The ex-
act signal can be changed to suit the application). The
driver also calls setjmp, and then transfers control to the
(globally visible) kitsune init function defined in rt .a;
this function performs some setup and calls the applica-
tion’s (non-exported) main function. The kitsune driver
is only 109 lines of C code and is the only part of a pro-
gram that cannot be dynamically updated.

When SIGUSR2 is received, the handler sets a global
flag. As discussed in more detail below, the running pro-
gram is expected to call the function kitsune update at
points at which an update is permitted to take effect; such
calls are dubbed update points [8]. The kitsune update

2

function will notice the flag has been set and call longjmp
to return to the driver, which then dynamically loads
the new program version’s shared object library. Since
the longjmp call will reset the stack, the kitsune update
function copies any local variables marked for migration
to a portion of the heap before jumping back to the driver.
Thus, just after an update, the old version’s full state
(e.g., its heap, open files and connections, process/par-
ent id, etc.) is still available. At this point, kitsune init
is invoked to start the new version.

The new program version now must do two things: (1)
migrate and transform of the old version’s data, and (2)
direct control to a point in the new version that is equiva-
lent to the point at which the update took place in the old
version. We call these activities data migration and con-
trol migration, respectively. The programmer directs the
control flow and the timing of state transformation using
a few judicious calls into the Kitsune runtime system,
and defines state transformation code itself using xfgen.

We next illustrate basic data and control migration us-
ing an example and consider xfgen in Section 3.

2.1 Data and Control Migration
The C program in Figure 2 implements a simple key-
value server. Clients connect to the server and send ei-
ther get i to get the integer value associated with index
i, or set i n to associate index i with value n. In the
figure we have highlighted the extra code we needed to
perform data and control migration. Let us ignore the
highlighted code for the moment so that we can discuss
the program’s core operation. Execution of the program
begins at main() on line 32. After defining some local
variables, we call load config () (code not shown) to ini-
tialize the three global configuration variables defined on
line 2 and then allocate an empty mapping. Then we
call setup connection () (code also not shown) to be-
gin listening on main sock, and enter the main loop on
lines 43–47. Here we simply wait for a connection and
then call client loop () to handle that connection.

The client loop () function repeatedly reads a com-
mand from the socket; finds the handler (a function
pointer) for that command in dispatch tab (created on
lines 9–11); increments a global counter op count that
tracks the number of requests; and then dispatches to
handle set or handle get. If there was no command re-
ceived from the socket, then we exit the loop on line 27.

While this code is very simple, many server programs
share this same general structure—a main loop that lis-
tens for connections; a client loop that dispatches dif-
ferent commands; and handler functions that implement
those commands. Now consider the highlighted code,
which implements Kitsune control and data migration.1

1We should emphasize that because this example is tiny, the amount

1 /∗ config variables set by load config () (code not shown) ∗/
2 int config foo , config bar , config size ; /∗ automigrated ∗/
3

4 typedef int data;

5 data ∗mapping; /∗ automigrated ∗/
6

7 int op count=0; /∗ automigrated ∗/
8 struct dispatch item

9 { char ∗key; dispatch fn ∗fun; } dispatch tab

10 attribute ((kitsune no automigrate))

11 = { {”get”, &handle get }, {”set”, &handle set } };
12

13 void handle set (int sock) {
14 key = recv int (sock);

15 val = recv int (sock);

16 mapping[key] = val;

17 send response(”%d> ok”, op count);

18 }
19 void handle get(int sock) {
20 key = recv int (sock);

21 send response(”%d> %d=%d”, op count, key, mapping[key]);

22 }
23 void client loop (int sock) {
24 while (1) {
25 kitsune update(” client ”);

26 char ∗cmd = read from socket(sock);

27 if (!cmd) break;

28 dispatch fn ∗cmd handler = lookup(dispatch tab, cmd);

29 op count++;

30 cmd handler(sock); }
31 }
32 int main() attribute ((kitsune note locals)) {
33 int main sock, client sock ;

34 kitsune do automigrate ();

35 if (! kitsune is updating ()) {
36 load config ();

37 mapping = malloc(config size ∗ sizeof (data)); }
38 if (!MIGRATE LOCAL(main sock))

39 main sock = setup connection();

40 if (kitsune is updating from (” client ”)) {
41 MIGRATE LOCAL(client sock);

42 client loop (client sock); }
43 while (1) {
44 kitsune update(”main”);

45 client sock = get connection(main sock);

46 client loop (client sock); }
47 }

Figure 2: Example; Kitsune additions highlighted

Migrating control. A dynamic update is initiated
when the program calls kitsune update(name), where
name identifies the update point, which can be queried
when the new program version is launched. In Figure 2
we have added update points on lines 25 and 44, i.e.,
we have one update point at the beginning of each long-
running loop. These are good choices for update points

of highlighted code is disproportionately large (see Section 4).

3

because the program is quiescent, i.e., in between event
handlers, when there is less in-flight state [13, 6].

The kitsune driver will load the new version and
call its main function, so the programmer must write
code to direct execution back to the equivalent spot
in the new program. Such code will likely include
calls to kitsune is updating (), which returns true if
the program is being run as a dynamic update (or its
variant kitsune is updating from (name) which returns
true for an update triggered at the named update point),
to distinguish update resumption from normal startup.

In Figure 2, the conditional on line 35 prevents the
configuration from being reloaded and mapping from
being reallocated when run as an update, since in this
case we will migrate that state from the old program
version instead (discussed below). If the update was
initiated from the client loop, then on line 40 we mi-
grate client sock from the previous version and then go
straight to that loop. Notice that when we return from
this call, we will enter the beginning of the main loop,
just as if we had returned from the call on line 46. Also
notice we do not specifically test for an update from the
”main” update point, as in that case the control flow of
the program naturally falls through to that update point.

Migrating state. When a Kitsune program starts as
an update, critical state from the previous version of the
program remains available in memory so it can migrate
to the new program version. The programmer is respon-
sible for identifying what state must be migrated, and
specifying how that migration is to take place.

The first step is to identify the global and local vari-
ables that should be migrated. All global variables
are migrated by default (that is, “automigrated”), and
the programmer can identify any exceptions. For our
example, migration occurs for the configuration vari-
ables on line 2 and for mapping on line 5. We use
the kitsune no automigrate attribute on line 10 to pre-
vent dispatch tab from being automigrated, so that it
is initialized normally—with pointers to new version
functions—rather than overwritten with old version data.
Local variables are not automigrated—the programmer
must annotate a function with kitsune note locals (c.f.
main()) to support migration of its local variables.

To facilitate data migration, kitc generates a per-file
do registration () function that registers the names and

addresses of all global variables, including statics, and
records for each one whether it is automigratable. The
do registration () function is marked as a constructor

so it is called automatically by dlopen. Similarly, kitc
introduces code in each of the functions annotated with
kitsune note locals to register (on function entry) and

deregister (on function exit) the names and addresses of
local variables (in thread-local storage).

The second step is to indicate when data should

be migrated after the new version starts. Calling
kitsune do automigrate () (line 34) starts migration of
global state, calling a state transformation function for
each registered variable that is automigratable. These
functions implement data transformation (versus just
copying), and are produced by xfgen from programmer
specifications. Each function follows a particular naming
convention, and the runtime finds them in the new pro-
gram version using dlsym(). If no state transformation
function is found, the data is copied. xfgen-generated
transformers traverse the heap starting from global and
(programmer-designated) local variables.

Within a function annotated with kitsune note
locals , the user calls MIGRATE LOCAL(var) to migrate
(via the appropriate state transformer) the old version of
var to the new version, e.g., as used on line 41 to migrate
client sock . MIGRATE LOCAL() returns 1 if the pro-

gram was started as a dynamic update; on line 38 we test
this result to decide whether to initialize main sock.

Our overall design for state migration reflects our ex-
perience that we typically need to migrate all, or nearly
all, global variables, whereas we need only migrate a
few local variables—only locals up to the relevant up-
date point are needed, and of these, most contain tran-
sient state. We also assume that all state that might
be transformed is reachable from the application’s local
and global variables. In our experiments, this assump-
tion was only violated in memcached, in which the only
pointers to some application data were stored in a library.
This problem is addressed by caching such pointers in
the main application; see Section 4.1.

Cleaning up after an update. After updating, Kit-
sune reclaims space taken up by the old program version.
Since control and data migration are under programmer
control in Kitsune, we need to specify the point at which
the update is “complete.” That point is when the new
program version reaches the same update point at which
the update occurred (c.f. the branch on line 42 of Fig-
ure 2, which then reaches the update point on line 25).
Kitsune then unloads the code and stack data from the
previous program version; to be safe, the programmer
must ensure there are no stale pointers to these locations.
For example, programmers must ensure any strings in
the data segment that need to migrate are copied to the
heap (which can be done in state transformers, or with
strdup in the program text). Kitsune also frees any heap
memory that xfgen-generated transformers have marked
as freeable. Finally, control returns to the new version.

2.2 Multi-threading

Updating a multi-threaded program is more challenging
since the programmer must migrate control and data for
every thread. We could require the programmer to write

4

this code manually, but we have observed that when the
set of threads before and after the update is the same,
a little additional support can make it easier to migrate
those threads automatically.

To make a pthreads program Kitsune-enabled, the pro-
grammer must modify all thread creation sites to use
kitsune pthread create , which is a drop-in replace-

ment for pthread create . When a thread is created
with kitsune pthread create (tid , f , arg), its thread
id tid , the name of thread function f, and the value of
f’s argument arg are (atomically) added to a global list
kitsune threads of live threads. When a thread exits
normally, it removes its entry from kitsune threads .

Once an update becomes available, each non-
main thread stops itself when it reaches an update
point, recording the name of the update point in its
kitsune threads entry. When all threads have reached
their update points, the main thread starts updating as
described in Section 2.1, and continues until it finally
reaches its own update point in the new version. Then the
run-time system iterates through kitsune threads and
relaunches each thread, calling the new version of the
recorded thread function with its recorded argument. If
needed, the developer can provide a special transforma-
tion function to modify the set of threads or transform
a thread’s entry function and argument. Each of those
threads then executes, performing whatever initialization
and data migration is needed. Each thread pauses when it
reaches the update point where it was stopped. Once all
threads have paused, the Kitsune runtime cleans up the
old program version, releasing its code and data as usual,
and resumes the main thread and all paused threads.

For Kitsune’s approach to work, the program must fol-
low several conventions we believe are reasonable. First,
each long-running thread must periodically reach an up-
date point. Typically this means a thread needs an update
point in any long running loop and should avoid block-
ing I/O and similar operations. Second, threads should
not hold resources, such as locks, at update points, since
the thread could be killed and restarted at that point. This
requirement is in keeping with the general criterion for
choosing update points, which stipulates that little or no
state should be in-flight. Third, the program should be
insensitive to the order in which the threads are restarted
in the new version. We expect this holds because the
main thread will likely migrate any shared state, which
would otherwise be the main source of contention be-
tween threads. Finally, recreating threads changes their
thread IDs, and so the program should not store those IDs
in memory. (We could relax this requirement with a little
more work to Kitsune.) All programs we considered in
our experiments satisfy these requirements, and we con-
jecture adapting non-compliant programs to them should
be easy.

3 xfgen

As mentioned briefly in Section 2.1, Kitsune’s runtime
invokes state transformer functions for each automigrat-
ing variable, following a naming convention to locate the
appropriate transformer function. In the general case, the
developer can construct such functions manually. Kit-
sune also includes xfgen, a tool that produces state trans-
formation functions from simple specifications. The de-
sign of xfgen is based on our experience applying DSU
to C [6, 7, 8, 12, 13], and aims to make common kinds
of state transformers easy to write while maintaining the
flexibility to implement arbitrary transformations.

Figures 3(a) and (b) summarize xfgen’s transformer
specification language. Each transformer has one of the
forms shown in part (a). The INIT transformers describe
how instances of new variables or types should be ini-
tialized, and the → transformers describe how to trans-
form variables or types that have changed and/or been
renamed. Here {new,old} var is either a local or global
variable name and {new,old} type is either a regular C
type name or a struct type field (we will see an exam-
ple below). The transformer action consists of arbitrary
C code that may reference the special xfgen variables
shown in Figure 3(b), which refer to entities from the old
or new program version. A→ transformation without an
action identifies a simple variable/type renaming.

We next illustrate the specification language through
a series of examples, and then discuss how transformer
functions are generated from specifications.

3.1 Example transformers
Example 1. Suppose we wrote a new version of
the program in Figure 2 in which we removed the
variable op count and replaced it with two new vari-
ables get count and set count that record per-operation
counts. Since we would not know exactly how many of
each of these operations had occurred by the time of the
update (we only have their sum in op count), we need
to decide how to initialize the new variables. We might
determine they should over-approximate the actual count
by writing the following xfgen specifications:

INIT get count: { $out = $oldsym(op count); }
INIT set count : { $out = $oldsym(op count); }

Here we are initializing new variables, so we use an INIT
transformer, and the action uses $oldsym(op count) to
refer to the old version’s value of op count and $out to
refer to the output of the transformer, i.e., get count and
set count in the new version.

Example 2. Suppose we change line 5 in Fig. 2 so
that, rather than an array, mapping is a linked list:

struct list { int key; data val ; struct list ∗next;} ∗mapping;

5

INIT new var : {action}
INIT new type : {action}
old var→ new var : {action}
old type→ new type : {action}
old var→ new var
old type→ new type

$in , $out – old/new type or var
$old/newsym(x) – x in old/new prog.
$old/newtype(t) – t in old/new prog.
$base – containing struct
$xform(old, new) – xformer ref.

E PTRARRAY(S) – size of ptd-to array
E ARRAY(S) – size of array
E OPAQUE – non-traversed pointer
E FORALL(@t) – polymorphism intro.
E VAR(@t) – refer to type var
E INST(typ) – instantiate poly. type

(a) transformers (b) special variables (c) type annotations

Figure 3: xfgen specification language and type annotations

Then we can specify the following transformer:

1 mapping →mapping: {
2 int key;

3 $out = NULL;

4 for (key = 0; key < $oldsym(config size); key++) {
5 if ($in [key] != 0) {
6 $newtype(struct list) ∗cur =

7 malloc(sizeof ($newtype(struct list)));

8 cur→key = key;

9 cur→val = $in[key];

10 cur→next = $out;

11 $out = cur;

12 } } }

Here mapping →mapping indicates this is a transformer
for the old version of mapping (the occurrence to the left
of the arrow, referred to as $in within the transformer)
to the new version of mapping (referred to as $out). The
body of the transformer loops over the old mapping array
(whose length is stored in old version’s config size), al-
locating and initializing linked list cells appropriately. In
the call to malloc, we use $newtype(struct list) to re-
fer to the list type in the new program version. (We have
yet to write an actual transformer that is this complex.)

Example 3. Finally, suppose the programmer wants to
change type data from int to long, and at the same time
extend mapping with field int cid to note which client
established a particular mapping:

typedef long data;

struct list {
int key; data val ; int cid ; struct list ∗next;} ∗mapping;

The programmer can specify that val should be simply
copied over and cid should be initialized to −1:

typedef data → typedef data: { $out = (long) $in ; }
INIT struct list . cid { $out = −1 }

Because the type of mapping changed, xfgen will use
these specifications to generate a function that traverses
the mapping data structure, initializing the new version
of mapping along the way. This is possible because there
is a structural relationship between elements in the old
list and elements in the new list, and because by default
xfgen-created state transformers stop traversal at NULL,
the list terminator. (We could not use this approach for
the previous array-to-list change because the data ele-
ments were not related structurally.)

Other special variables. In the examples so far, we
have seen uses of all but the last two special variables in
Figure 3(b). The variable $base refers to the struct whose
field is being updated. For example, in

INIT struct s .x: { $out = $base.y }

new field x of struct s is initialized to field y in the same
struct. Variable $xform refers to a particular type trans-
former. For example, suppose we merged Examples 2
and 3 into a single update that migrated mapping to a list
and changed data’s type to long. Then we could use the
transformer from Example 2, changing line 9 to

XF INVOKE($xform(data, data), &$in[key], &cur→val);

$xform is passed an old and a new type name (here, both
are data) and it looks up (or forces the creation of) the
transformer between those types. This transformer is re-
turned as a closure that takes pointers to the old and new
object versions and can be called using XF INVOKE.

3.2 Transformer generation

xfgen generates code to perform migration and transfor-
mation from the . xf file and the type summary files (. ts
files in Figure 1) of the old and new versions. A type
summary file contains all of the type definitions (e.g.,
struct, typedef) and global and local variable declara-
tions from its corresponding .c source file, noting which
are eligible for migration (according to the rules given
in Section 2.1). xfgen uses type information to gener-
ate code that can inspect and manipulate program data,
and it uses migration information to make sure . xf files
are complete: an . xf file is rejected if it fails to define
a transformer for a migratable variable or type that has
changed between versions.

Type annotations. xfgen sometimes needs type infor-
mation beyond what is available in C. For example, sup-
pose we write a transformer for a variable foo ∗x. Then
xfgen needs to know how to traverse the memory pointed
to by x, e.g., whether x is a pointer to a single foo instance
or an array. In Kitsune, this extra information is provided
by the programmer as annotations, shown in Figure 3(c).
kitc recognizes these annotations and adds the informa-
tion supplied by them to the . ts files.

6

The annotations, inspired by Deputy [4], are fairly
straightforward. E PTRARRAY(S) provides a size S (an
integer or variable) for a pointed-to array. E ARRAY(S)
provides a size S for array fields at the end of a struct
(which can be left unsized in C). E OPAQUE annotates
pointers that should be copied as values, rather than re-
cursed inside during traversals. By default, xfgen as-
sumes that t∗ values for all types t are annotated with
E PTRARRAY(1); explicit annotations override this de-
fault.

Finally, xfgen includes annotations to handle some id-
iomatic uses of void∗ to encode parametric polymor-
phism (a.k.a. generics). For example, the following def-
inition introduces a struct list type that is parameter-
ized by type variable @t, which is the type of its contents:

struct list {
void E VAR(@t) ∗val;

struct list E INST(@t) ∗next;

} E FORALL(@t);

E FORALL(@t) introduces polymorphism, E VAR(@t)
refers to type variable @t, and E INST(@t) instantiates
a polymorphic type with type @t. With the above dec-
laration, we could write struct list E INST(int) ∗x to
declare that x is a list of ints.

Variable transformers. For each migrated variable
listed in the new version’s . ts file, if that variable is
named explicitly in an old var→new var transformer,
then xfgen generates C code from the given action, sub-
stituting references appropriately. For example, $in and
$out in the action are replaced by values returned from
kitsune lookup old and new, respectively, which re-
turn a pointer to a symbol in the old or new program
version, respectively, or null if no such symbol exists.
For each remaining migrated variable x, xfgen will con-
sult the y→x renaming rule if one exists to determine the
source symbol y; otherwise it assumes x’s name is un-
changed. xfgen then generates C code that migrates the
variable by calling the type transformation from the type
of the old-version symbol to x’s type (as described next).

As an example, xfgen will produce the following C
code from Example 1, above:

void kitsune transform get count () {
int ∗o op count = (int∗) kitsune lookup old (”op count”);

int ∗n get count = (int∗)kitsune lookup new(”get count”);

∗n get count = ∗o op count;

}
void kitsune transform set count () { /∗ as above ∗/ }

Type transformers. Generating C code for manu-
ally specified type transformers is analogous to what
is done for manually specified variable transformers.
We also generate transformation functions for all (un-
changed) types t of migratable data, i.e., for the follow-
ing cases: (1) when a migrated variable has type t but

no manual transformer (as with struct list in Exam-
ple 3, above); (2) when traversed data references values
of type t (e.g., if an unchanged global variable had type
struct s where s’s definition includes a value of type t);
and (3) when a transformer for t is referenced directly in
a manual transformer (e.g., as with $xform(data, data)
mentioned above). For these cases, the functions merely
recursively invoke transformation functions on the im-
mediate children of the type in question (skipping NULL
values); no values of that type are copied, but pointers
may be redirected to values that are.

Whenever a type transformer migrates a pointer, it per-
forms several steps. First, if the pointer is NULL, it does
nothing. Otherwise, it checks a global map to see if the
pointer has been migrated before; if so it returns the old
target. Doing this maintains the shape of the heap and
avoids infinite loops during traversal of cycles. If nei-
ther of these two conditions apply, it calls the appropriate
transformer for the pointer’s target. If the pointer is to a
global or local variable, it stores the result in the corre-
sponding new-version variable’s space. If the pointer tar-
get’s type has truly changed (and so must have a manual
transformer with an action), it mallocs space and stores
the result there, remembering the result’s address in the
global map. It also stores the old-version pointer on a list
of addresses to be reclaimed once the update is complete.

Following the above procedure, xfgen will generate
transformer/traversal code that will deeply explore the
heap and ensure that all pointers to the data and stack
segment are transformed to work once the old program
is unloaded. If the programmer knows that a particular
data structure contains only pointers into the heap (and
not to global or local variables) and no pointed-to ob-
jects require transformation, she can create transformers
that truncate the traversal to reduce update time (we did
not use this trick in our benchmarks).

The transformers generated by xfgen assume there are
no pointers into the middle of transformed objects. To
help check this assumption, we provide an execution
mode in which the created transformers use an interval
tree to record the start and end of each object they trans-
form. A transformer reports an error if it is ever asked to
migrate an object that overlaps with, but does not exactly
match the bounds of, a previously migrated object.

4 Experiments

To evaluate Kitsune, we used it to develop updates for
five widely deployed server programs. We found the
code changes required for updating are comparable to
prior systems, while performance is uniformly better,
with essentially no steady-state overhead. We found that
the time required to apply an update ranges from 2ms up
to 1s, depending on the program; in all cases, however,

7

Program # Vers LoC Upd Ctrl Data E ∗ Oth Σ v→v t→t Σ xf LoC
vsftpd 14 (1.1.0–2.0.6) 12,202 6 64 18 12 27 127 9 21 30 101
redis 5 (2.0.0–2.0.4) 13,387 1 6 9 47 24 87 0 4 4 37
Tor 13 (0.2.1.18–0.2.1.30) 76,090 1 22 39 43 171 276 16 15 31 189
memcached∗ 3 (1.2.2–1.2.4) 4,181 4 68 50 22 66 210 12 10 22 27
icecast∗ 5 (2.2.0–2.3.1) 15,759 13 45 18 33 48 157 25 50 75 200
∗Multi-threaded

Table 4: Kitsune benchmark programs, and modifications to support updating

the times seem acceptable for typical use.
Benchmarks. The left portion Table 4 lists for each

program the length of the version streak we looked at
(for n versions, there are n−1 updates), which ver-
sions we considered, and the number of source lines of
the last version as computed by sloccount. Vsftpd is a
popular open-source FTP server. Redis is a key-value
database used by several high-traffic services, including
guardian.co.uk and digg.com. Tor is a popular onion-
router that provides anonymous Internet access. Mem-
cached is a widely used, high-performance data caching
system employed by sites such as Twitter and Wikipedia.
Icecast is a popular music streaming server. We consider
at least three months of releases per program; for Tor we
cover two years and for vsftpd we cover three years.

4.1 Adding updatability

The right portion of Table 4 summarizes the Kitsune-
related changes we made to these programs. In all
cases, the versions we updated behaved correctly be-
fore, during, and after updates were applied. The mid-
dle columns give the number of update points added; the
number of lines of code needed for control migration,
e.g., kitsune is updating (), and data migration, e.g.,
kitsune do automigrate (); the number of type annota-
tions for xfgen, e.g., E PTRARRAY; the number of lines
changed for other reasons; and their sum. The modifi-
cation/transformation counts are summed across all ver-
sions of the program in our benchmark, with changes
that persist across versions counted once. The rightmost
columns of the table list the number of variable trans-
formers (v→v) and type transformers (t→ t), across all
versions, and their sum. We also list the total number of
lines of transformer code we wrote, across all versions.

This data shows that the total manual work is small,
and, as discussed next, seems comparable to, or slightly
more than, that required by related systems. Interest-
ingly, the magnitude of the changes required is not di-
rectly proportional to either the code size or number of
versions considered. This makes sense, as changes to
support control migration depend on the number and lo-
cation of update points, and data annotations and spec-
ifications for xfgen depend on the type and number of

data structures; none of these program features depends
directly on code size.

Vsftpd. Many of the changes we made to vsftpd were
typical across our benchmarks: we added type informa-
tion for generics and inserted control flow changes to
avoid overwriting OS state when updated. We added one
update point for each of the five long-running loops in
the program, e.g., the connection listener, login proces-
sor, command processor, etc.

The most interesting change we made to vsftpd was to
handle I/O. Vsftpd replaces calls to recv with calls to a
wrapper that restarts the actual read if it is interrupted,
e.g., by the receipt of a signal. We inserted one update
point in the wrapper so that interruption can initiate an
update. To simplify the control-flow changes needed, the
update point need not be given its own name, but can
reuse the name of the update point in the loop that initi-
ated the wrapped call; this is because this loop will reini-
tiate the call when the update completes.

Other DSU systems. Neamtiu et al. [13] applied Gin-
seng, another DSU system, to vsftpd. They updated
a subset of the version streak we did (finishing at ver-
sion 2.0.3). Even though their changes support just one
update point (versus our six, which permit updating in
many more situations), the effort was comparable: They
report 50 lines of code changed and 162 lines for state
transformation, compared to 127 lines of code changed
and 101 lines of state transformation for Kitsune.

Makris and Bazzi [9] also updated vsftpd using Up-
Stare for a shorter streak. They say that “some manual
initialization of new variables and struct fields” was re-
quired, along with “11 user-defined continuation map-
pings,” but provide no detail as to their overall size.

Redis. Redis required few modifications to support
updating. We placed a single update point in its main
event loop and added one check to avoid some reinitial-
ization. The vast majority of Redis’s state is stored in a
single global variable, server , so few variables needed
migration. Redis makes extensive use of linked lists
and hash tables, and we used xfgen’s generics annota-
tions to model their types precisely. The version streak
we considered included only code modifications, but we
still needed xfgen to migrate data structures that contain
global variable addresses (which change with updates).

8

Finally, redis uses custom memory management func-
tions that xfgen does not support, so we modified these
functions to directly call the standard malloc and free .
We leave support of custom allocators to future work.

We are unaware of prior work applying DSU to redis.
Tor. Tor is the largest of our benchmark programs, at

∼76 KLoC. Adding DSU support required one update
point in Tor’s main loop, and a small number of control
flow modifications to prevent reinitialization of updated
state. The small size of the latter is particularly surpris-
ing given the very large amount of state in Tor. We did
need to add code to migrate one object (representing the
network consensus) manually, because it cannot be re-
freshed correctly until the rest of the state has been mi-
grated. The majority of Tor’s changes served to expose
DSU functionality in Tor’s control interface, e.g., so that
updates could be triggered with a remote client.

Tor’s transformers were generated by xfgen. We wrote
eight xfgen rules, corresponding to 12 variables and 5
types. All the transformers were straightforward since
data representation changes were rare in these versions.
One challenge was that Tor uses libevent for event pro-
cessing, and that library stores function pointers inside
event structs. Tor maintains a list of those structs,
and we wrote state transformers that update those point-
ers when a new version is loaded. These transformers,
along with similar transformers updating function point-
ers used by either Tor or the OpenSSL library, comprised
the majority of xfgen rules.

We are unaware of prior work applying DSU to Tor.
Memcached. Memcached is a multi-threaded server

that uses libevent, like Tor. As with Tor, we needed to
make some minor changes to memcached so the updating
signal properly reaches the Kitsune library to initiate the
update process. We also needed to reinstall new function
pointers in libevent after an update. More interestingly,
we needed to add code to memcached to maintain a list of
active connections, so that xfgen properly generates code
to be able to transform these connections at update-time;
in the vanilla implementation of memcached, connection
objects are not otherwise reachable from global and local
variables once they are passed to libevent.

Other DSU systems. Neamtiu and Hicks [12] updated
memcached using Ginseng. They needed 26 lines of pro-
gram changes and 12 lines for state transformation. Kit-
sune required substantially more changes in part because
we did not change libevent itself, which in Neamtiu and
Hicks’ setup was merged into the main program (and
thus was updatable). Their changes also created a prob-
lem with reaching update points suitably often due to in-
tervening blocking calls; placing the update point outside
libevent avoided this issue.

Icecast. Icecast is another multi-threaded program,
with separate threads for connection acceptance, connec-

Program Orig (siqr) Kitsune Ginseng
64-bit, 4×2.4Ghz E7450 (6 core), 24GB mem, RHEL 5.7

vsftpd 2.0.6 6.55s (0.04s) +0.75% –
memcached 1.2.4 59.30s (3.25s) +0.51% –

redis 2.0.4 46.83s (0.40s) -0.31% –
icecast 2.3.1 10.11s (2.27s) -2.18% –

32-bit, 1×3.6Ghz Pentium D (2 core), 2GB mem, Ubuntu 10.10
vsftpd 2.0.3 5.71s (0.01s) +1.79% +8.05%

memcached 1.2.4 101.40s (0.35s) -0.49% +18.44%
redis 2.0.4 43.88s (0.16s) -1.21% –

icecast 2.3.1 35.71s (0.68s) +1.18% -0.28%

Table 5: Steady-state performance overhead

tion handling, file serving, receiving a stream from an-
other server, sending statistics, and more. Thus, it needed
more than the usual number of update points. We added
annotations to migrate local variables or skip initializa-
tion within the entry functions of each thread, as needed.

Other DSU systems. Neamtiu and Hicks [12] also con-
sidered updates to the same streak of icecast versions
(plus one earlier version). They made 154 lines of code
changes and wrote 80 lines of state transformation code.
For Kitsune we changed 157 lines of the main program,
and wrote 200 lines of xfgen specifications.

4.2 Performance

Steady-state performance overhead. We measured the
steady-state overhead of Kitsune on all programs except
Tor, discussed separately below. For comparison, we
also measured the overhead of Ginseng for the three pro-
grams (vsftpd, memcached, and icecast) for which Gin-
seng updates were available.

We used the following workloads: For memcached,
we ran memslap (2.5M operations using the memslap’s
default workload). For redis, we used redis-benchmark
(1M GET and 1M SET operations), and for a fair com-
parison, we modified the non-updating version of redis to
use the standard memory allocation functions, as we had
done to support xfgen. For vsftpd, we measured the time
to perform the following interaction 2K times: connect
to the server, change directories, and retrieve a directory
listing. For icecast, we used a benchmark originally de-
veloped for Ginseng [12] that measures the time taken
for 16 simultaneous clients to download 7 music files,
each roughly 2MB in size. For all programs, we ran the
client and server on the same machine.

Table 5 reports the results. We ran each benchmark 21
times and report the median time for the unmodified pro-
grams along with the semi-interquartile range (SIQR),
and the slowdowns for Kitsune and Ginseng (the median
Kitsune or Ginseng time compared to the median origi-
nal time). The top of the table gives results on a 24 core,

9

Program Med. (siqr) Min Max
64-bit, 4×2.4Ghz E7450 (6 core), 24GB mem, RHEL 5.7

vsftpd→2.0.6 2.99ms (0.04ms) 2.62 3.09
memcached→1.2.4 2.50ms (0.05ms) 2.27 2.68

redis→2.0.4 39.70ms (0.98ms) 36.14 82.66
icecast→2.3.1 990.89ms (0.95ms) 451.73 992.71

icecast-nsp→2.3.1 187.89ms (1.77ms) 87.14 191.32
tor→0.2.1.30 11.81ms (0.12ms) 11.65 13.83

32-bit, 1×3.6Ghz Pentium D (2 core), 2GB mem, Ubuntu 10.10
vsftpd→2.0.3 2.99ms (0.04ms) 2.62 3.09

memcached→1.2.4 2.50ms (0.05ms) 2.27 2.68
redis→2.0.4 39.70ms (0.98ms) 36.14 82.66

icecast→2.3.1 885.39ms (7.47ms) 859.00 908.87
tor→0.2.1.30 10.43ms (0.46ms) 10.08 12.98

Table 6: Kitsune update times

64-bit machine, and the bottom gives results on a 2 core,
32-bit machine; Ginseng only works in 32-bit mode.

From this data, we can see that Kitsune has essentially
no steady-state overhead: the performance differences
range from -2.18% to 1.79%, which is well within the
noise on modern environments [11]. In contrast, for two
of the three programs (vsftpd and memcached), the Gin-
seng overhead is more significant. And while we have
not ourselves benchmarked UpStare, the authors of that
system report vsftpd overheads of 4.9% and 7.4%, de-
pending on the features enabled [9].

Tor. While we did not measure the overhead of Kit-
sune on Tor directly, we did test it by running a Tor re-
lay in the wild. We dynamically updated this relay from
version 0.2.1.18 to version 0.2.1.28 as it was carrying
traffic for Tor clients. We initiated several dynamic up-
dates during periods of load, when as many as four thou-
sand connections carrying up to 11Mb/s of traffic (up and
down) were live. No client connections were disrupted
(which would have been indicated by broken or renego-
tiated TLS sessions). Over the course of this experiment,
our relay carried over 7TB of traffic.

Time required for an update. We also measured the
time it takes to deploy an update, i.e., the elapsed time
from when an update is signaled as available to when
the update has completed. Table 6 summarizes the re-
sults for the last update in each streak, giving the median,
SIQR, minimum, and maximum update times. For each
program, we picked a suitable workload during which
we did the update. For vsftpd, we updated after an ftp
client had connected to and interacted with the server;
for redis and Memcached, we inserted 1K and 15K key-
value pairs, respectively, prior to update; and for icecast,
we established one connection to a music source and 10
clients receiving that stream prior to updating. For Tor,
we fully bootstrapped as a client, establishing multiple
circuits through the network and communicating with di-
rectory servers, and then applied the update.

 0

 50

 100

 150

 200

 0 2000 4000 6000 8000 10000 12000 14000

u
p
d
at

e
ti
m

e
(m

s)

key-value pairs

redis v0->v1
redis v1->v2
redis v2->v3
redis v3->v4

memcached v0->v1
memcached v1->v2

Figure 7: State size vs. update time

For all programs except icecast, the update times are
quite small. For icecast, most of the nearly 1 second
delay occurs while the Kitsune runtime waits for each
thread to reach an update point. This time was length-
ened by one-second sleeps sprinkled throughout several
of these threads. The line in the table labeled icecast-nsp
measures the update time when these sleeps are removed,
and shows the resulting time is much shorter. Because
the sleeps are there, we conjecture icecast can tolerate
the pause for updates; we did not observe a noticeable
stop in the streamed music during the update.

Recall from Section 3.2 that xfgen-generated trans-
formers may traverse significant portions of the heap, and
thus for some updates the update time may vary with the
size of the program state. Among our programs, the most
likely to exhibit this issue are redis and memcached, as
they may accumulate significant state. Figure 7 graphs
the update time for these two programs versus the num-
ber of key-value pairs stored. For redis, the update time
grows linearly because we traverse each of the data items
on the heap, since some contain pointers to global vari-
ables which must be updated. On the other hand, mem-
cached’s update times remain relatively constant because
it stores its data in arrays that we treat opaquely, remov-
ing the need to traverse each instance, so the update time
does not depend on the amount of data in the heap.

5 Related Work

Table 8 characterizes the mechanisms used to implement
Kitsune and other recent C/C++ DSU systems; most of
these systems target applications, while Ksplice, K42,
and DynaMOS support (or are) OS kernels. We discuss
tradeoffs resulting from these mechanism choices, and
argue that Kitsune provides the greatest flexibility and
best performance with modest programmer effort. The
footnotes in the table summarize the discussion below.

Code updates. Most systems effect code updates at
the level of individual functions (or objects). As noted in

10

Code upd Data upd Timing

tr
am

p

in
d

pr
og

re
pl

sh
dw

w
ra

p

no
na

ct
v

up
d

pt
s

DynaMOS4 × ×
Ekiden × × ×
Ginseng12345 × × ×
K4225 × × ×
Kitsune × × ×
Ksplice × × ×
OPUS2 × – – – ×
POLUS245 × ×
UpStare23 × × (×)

1needs deep analysis
2inhibits optimizations
3pervasive instrumentation

4mixes old and new code
5relaxed thread sync.

Table 8: Comparing DSU systems for C/C++

the first column, Ksplice [2], OPUS [1], DynaMOS [10],
and POLUS2 [3] insert, at run-time, a trampoline in the
old function to jump to the function’s new version. As
noted in the second column, Ginseng [13] and K42 use
indirection: Ginseng compiles direct function calls into
calls via function pointers, while the K42 OS’s object
handles are indirected via a hand-coded object transla-
tion table (OTT); updates take effect by redirecting indi-
rection targets to the new versions.

There are several drawbacks to using these mecha-
nisms. Trampolines require a writable code segment,
which makes the application more vulnerable to code in-
jection attacks. Trampoline-based updating may break
programs optimized using inlining, since it presumes to
know where the start of a function is, so POLUS and
OPUS both forbid inlining. (Ksplice is able to account
for the compiler’s inlining decisions.) Using indirect
calls adds overhead to normal (“steady state”) execu-
tion and also inhibits inlining. Most onerously, neither
trampolines nor indirections support updating functions
that never exit, such as main, which changes relatively
frequently [6], or the scheduling loop in the OS. In the
best case, programmers must refactor the program so that
long-running loop bodies are in separate functions [13].

The remaining three systems, UpStare [9], Eki-
den [7],3 and Kitsune support more general changes by
updating at the granularity of the whole program rather
than individual functions. UpStare loads in code for the
new program and then performs stack reconstruction: the
running program unwinds the current stack one function

2LUCOS is from the same research group that produced POLUS,
and is essentially a version of POLUS that uses VMMs to effect
changes in operating systems. All comments we make about POLUS
apply equally to LUCOS, so we do not mention it further in this section.

3Ekiden is the precursor of Kitsune and works by transferring state
to an updated process; the programmer API is roughly the same, but
Ekiden induces slower update times and requires more memory.

at a time back to main, and then rewinds the stack to a
new-version program point specified by the programmer.
In contrast, Kitsune relies on the programmer to migrate
control to the equivalent new-version program point.

Kitsune’s manual approach pays dividends in both bet-
ter performance and simpler semantics. To allow updates
to happen at any program point, UpStare’s compiler adds
unwinding/rewinding code to all functions; while conve-
nient, this imposes performance overhead on normal ex-
ecution. Moreover, to exploit UpStare’s flexibility, a de-
veloper must carefully define how to map from all possi-
ble old-version thread stacks to new-version equivalents.
UpStare reduces this burden allowing the programmer to
limit updates to fewer program points, just as Kitsune
does. But then the value of general-purpose stack re-
construction is less clear. Kitsune allows all compiler
optimizations, and code to support control migration im-
poses no overhead during normal execution since such
code only appears on program paths leading to update
points, and these paths tend not to intersect with normal
execution paths. Moreover, expressing control migration
in the code rather than in a specification to the side is
arguably advantageous: with only a few update points
there is very little code to write, and its presence in the
program makes the update semantics explicit and easier
to understand.

Data updates. Returning to the table, we can see that
most systems handle changes to data structure represen-
tations employing object replacement, in which the pro-
grammer can allocate replacement objects and initialize
them using data from the old version. Ksplice and Dy-
naMOS leave the old objects alone but allocate shadow
data structures that contain only the new fields. Gin-
seng uses an approach called type wrapping: programs
are compiled to use mediator functions to access updat-
able objects, and these functions initiate transformation
of objects that are not up to date.

Shadow data structures have the benefit that fewer
functions are changed by an update: if we add a new field
to a struct, then only code that uses that field is affected,
rather than all code that uses the struct. But program-
mers must write additional code to deal with shadow
fields and manage their lifetimes, which imposes run-
time overhead and clutters the software over time. Type
wrapping has the benefit that there is no need to find ob-
jects in order to update them; rather, object transforma-
tion will occur lazily as the new version executes. But
type wrapping has several limitations: (1) mediator func-
tions slow normal execution; (2) objects must be com-
piled to have extra “slop” space for future growth which
hurts performance (e.g., cache locality) and may prove
insufficient for some changes; (3) the change in repre-
sentation forbids certain coding idioms (e.g., involving
typecasts to/from void∗), which Ginseng identifies using

11

a whole-program analysis that has trouble scaling.
Object replacement offers the best steady state perfor-

mance, but there must be a way to find all instances of
changed objects (e.g., by chasing pointers from global
variables) and redirect these pointers to newly allocated,
transformed objects. K42’s coding style makes this
easy—the system can just traverse the OTT—but most
applications are not written this way. Kitsune’s xfgen
tool is able to generate traversal code given relatively
small specifications and some type annotations; in other
systems, the programmer burden is higher. Note that
DSU for type-safe languages would not need xfgen’s
traversal generation: the garbage collector can be used to
automatically find and initiate transformation of changed
objects [14, 5] without need of further type annotations.

Timing. Returning to the table, we consider how sys-
tems determine when an update may take effect. Ksplice,
K42, and OPUS only permit an update when no thread
is running code that will be changed. While this re-
striction reduces post-update errors, it does not eliminate
them [6], and moreover imposes strong restrictions on
the form of an update and how quickly it can be applied.

For increased flexibility, other systems allow updates
to active code. Kitsune and UpStare updates take place
when all threads reach a programmer-designated up-
date point (for UpStare, such points may be system-
determined). We have found this simple approach works
quite well in practice. In contrast, Ginseng allows an
update to take effect so long as it appears as though it
occurred when all threads were at update points [12].
This approach does accelerate update times, but the static
analysis that underlies it scales poorly and is conserva-
tive, requiring awkward code restructurings. POLUS al-
lows threads to update immediately, and thus because
POLUS updates take effect at function calls, after an up-
date a program may wind up running bits of old and new
code at the same time; a study using Ginseng showed
mixing code versions substantially increases the odds of
errors [6]. Moreover, POLUS data structures are ver-
sioned, with version N of the code accessing version N of
the data, so the programmer defines callbacks (invoked
via virtual memory page protection support) to keep the
copies in sync. We imagine this could be tricky. Our ex-
perience with the simple barrier approach suggests these
more sophisticated approaches, with higher programmer
demands, may be unnecessary.

6 Conclusions

We have presented Kitsune, a new system for dynami-
cally updating C programs. Kitsune works by updating
the entire program at once, thus avoiding the restrictions
imposed by other DSU systems on data representations,
programming idioms, and compiler optimizations. Kit-

sune’s design allows program changes for updatability to
be simple and informative, and xfgen makes writing state
transformers much easier. Our results applying Kitsune
to single- and multi-threaded benchmarks show that Kit-
sune has essentially no performance overhead, and code
changes required to use Kitsune are comparable to, or
only slightly more than, prior systems. We believe that
the ideas and insights behind Kitsune could also be ap-
plied to C++ programs, though extending to kitc and xf-
gen to C++ would require non-trivial effort. We believe
that Kitsune’s careful balancing of flexibility, efficiency,
and ease-of-use makes it a major step forward in practi-
cal dynamic software updating for C.

Acknowledgments. This research was supported in
part by NSF grant CCF-0910530 and the partnership be-
tween UMIACS and the Laboratory for Telecommunica-
tion Sciences. We would like to thank Karla Saur and
Jonathan Turpie for help in the development and testing
of Kitsune. Emery Berger, MiguelCastro, JP Martin, and
Cristi Zamfir provided helpful comments on drafts of this
paper.

References

[1] ALTEKAR, G., BAGRAK, I., BURSTEIN, P., AND
SCHULTZ, A. OPUS: Online patches and updates
for security. In Proc. USENIX Security (2005).

[2] ARNOLD, J., AND KAASHOEK, M. F. Ksplice:
automatic rebootless kernel updates. In Proc. Eu-
roSys (2009).

[3] CHEN, H., YU, J., HANG, C., ZANG, B., AND
YEW, P.-C. Dynamic software updating using a
relaxed consistency model. IEEE Transactions on
Software Engineering 37, 5 (Sept. 2011).

[4] CONDIT, J., HARREN, M., ANDERSON, Z., GAY,
D., AND NECULA, G. C. Dependent types for
low-level programming. In Proc. ESOP (2007),
pp. 520–535.

[5] GILMORE, S., KIRLI, D., AND WALTON, C. Dy-
namic ML without dynamic types. Tech. Rep. ECS-
LFCS-97-378, LFCS, University of Edinburgh,
1997.

[6] HAYDEN, C. M., SMITH, E. K., HARDISTY,
E. A., HICKS, M., AND FOSTER, J. S. Evaluat-
ing dynamic software update safety using efficient
systematic testing. IEEE Transactions on Software
Engineering 99, PrePrints (Sept. 2011).

[7] HAYDEN, C. M., SMITH, E. K., HICKS, M., AND
FOSTER, J. S. State transfer for clear and efficient
runtime upgrades. In Proc. HotSWUp (2011).

12

[8] HICKS, M., AND NETTLES, S. Dynamic software
updating. ACM TOPLAS 27, 6 (2005).

[9] MAKRIS, K., AND BAZZI, R. Immediate Multi-
Threaded Dynamic Software Updates Using Stack
Reconstruction. In USENIX ATC (2009).

[10] MAKRIS, K., AND RYU, K. D. Dynamic and
Adaptive Updates of Non-Quiescent Subsystems in
Commodity Operating System Kernels. In Proc.
EuroSys (2007).

[11] MYTKOWICZ, T., DIWAN, A., HAUSWIRTH, M.,
AND SWEENEY, P. F. Producing wrong data with-

out doing anything obviously wrong! In Proc. AS-
PLOS (2009), pp. 265–276.

[12] NEAMTIU, I., AND HICKS, M. Safe and timely
dynamic updates for multi-threaded programs. In
Proc. PLDI (2009).

[13] NEAMTIU, I., HICKS, M., STOYLE, G., AND
ORIOL, M. Practical dynamic software updating
for C. In Proc. PLDI (2006).

[14] SUBRAMANIAN, S., HICKS, M., AND MCKIN-
LEY, K. S. Dynamic Software Updates: A VM-
centric Approach. In Proc. PLDI (2009).

13

